您好、欢迎来到现金彩票网!
当前位置:秒速快3 > 数据挖掘 >

要学数据挖掘需要哪些基础

发布时间:2019-07-24 22:43 来源:未知 编辑:admin

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  展开全部个人感觉数据挖掘是一个比较大的概念,可以理解为:数据挖掘=业务知识+自然语言处理技术(NLP)+计算机视觉技术(CV)+机器学习/深度学习(ML/DL)(1)其中业务知识具体指的是个性化推荐,计算广告,搜索,互联网金融等;NLP,CV分别是处理文本,图像视频数据的领域技术,可以理解为是将非结构化数据提取转换成结构化数据;最后的ml/dl技术则是属于模型学习理论;(2)在选择岗位时,各个公司都没有一套标准的称呼,但是所做的事情无非2个大方向,一种是主要钻研某个领域的技术,比如自然语言处理工程师,计算机视觉工程师,机器学习工程师等;一种是将各种领域技术应用到业务场景中去解决业务需求,比如数据挖掘工程师,推荐系统工程师等;具体的称呼不重要,重要的是平时的工作内容;PS:在互联网行业,数据挖掘相关技术应用比较成功的主要是推荐以及计算广告领域,而其中涉及到的数据主要也是文本,所以NLP技术相对来讲比较重要,至于CV技术主要还是在人工智能领域(无人车,人脸识别等)应用较多,本人了解有限,相关的描述会较少;

  3.根据之前的分析,也可以看到该岗位所需要的3种基本能力分别是业务经验,算法能力与工程能力;

  (1)编程基础:需要掌握一大一小两门语言,大的指C++或者JAVA,小的指python或者shell脚本;需要掌握基本的数据库语言;

  (3)数据结构与算法分析基础:掌握常见的数据结构以及操作(线性表,队,列,字符串,树,图等),掌握常见的计算机算法(排序算法,查找算法,动态规划,递归等);

  (4)海量数据处理平台:hadoop(mr计算模型,java开发)或者spark(rdd计算模型,scala开发),重点推荐后者;

  建议:这些是必须要了解的,即使没法做到基础扎实,起码也要掌握每门学科的理论体系,涉及到相应知识点时通过查阅资料可以做到无障碍理解;

  (2)机器学习/深度学习:掌握常见的机器学习模型(线性回归,逻辑回归,SVM,感知机;决策树,随机森林,GBDT,XGBoost;贝叶斯,KNN,K-means,EM等);掌握常见的机器学习理论(过拟合问题,交叉验证问题,模型选择问题,模型融合问题等);掌握常见的深度学习模型(CNN,RNN等);

  (3)自然语言处理:掌握常见的方法(tf-idf,word2vec,LDA);

  (2)通过参加数据挖掘竞赛熟悉相关业务场景,常见的比赛有Kaggle,阿里天池,datacastle等;

  PS:以上都是一些入门级别的介绍,在长期的学习中,应该多看顶会paper,多读开源代码,多学习优秀解决方案;

http://talkingwithjon.com/shujuwajue/812.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有