您好、欢迎来到现金彩票网!
当前位置:秒速快3 > 数据挖掘 >

数据挖掘技术主要包括哪些

发布时间:2019-07-24 22:46 来源:未知 编辑:admin

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  数据挖掘技术主要有决策树 、神经网络 、回归 、关联规则 、聚类 、贝叶斯分类6中。

  决策树是一种非常成熟的、普遍采用的数据挖掘技术。在决策树里,所分析的数据样本先是集成为一个树根,然后经过层层分枝,最终形成若干个结点,每个结点代表一个结论。

  神经网络是通过数学算法来模仿人脑思维的,它是数据挖掘中机器学习的典型代表。神经网络是人脑的抽象计算模型,数据挖掘中的“神经网络”是由大量并行分布的微处理单元组成的,它有通过调整连接强度从经验知识中进行学习的能力,并可以将这些知识进行应用。

  回归分析包括线性回归,这里主要是指多元线性回归和逻辑斯蒂回归。其中,在数据化运营中更多使用的是逻辑斯蒂回归,它又包括响应预测、分类划分等内容。

  关联规则是在数据库和数据挖掘领域中被发明并被广泛研究的一种重要模型,关联规则数据挖掘的主要目的是找出数据集中的频繁模式,即多次重复出现的模式和并发关系,即同时出现的关系,频繁和并发关系也称作关联。

  聚类分析有一个通俗的解释和比喻,那就是“物以类聚,人以群分”。针对几个特定的业务指标,可以将观察对象的群体按照相似性和相异性进行不同群组的划分。经过划分后,每个群组内部各对象间的相似度会很高,而在不同群组之间的对象彼此间将具有很高的相异度。

  贝叶斯分类方法是非常成熟的统计学分类方法,它主要用来预测类成员间关系的可能性。比如通过一个给定观察值的相关属性来判断其属于一个特定类别的概率。贝叶斯分类方法是基于贝叶斯定理的,朴素贝叶斯分类方法作为一种简单贝叶斯分类算法甚至可以跟决策树和神经网络算法相媲美。

  数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据集中识别有效的、新颖的、潜在有用的,以及最终可理解的模式的非平凡过程。它是一门涉及面很广的交叉学科,包括机器学习、数理统计、神经网络、数据库、模式识别、粗糙集、模糊数学等相关技术。

  数据挖掘的技术,可分为:统计方法、机器学习方法、神经网络方法和数据库方法。统计方法,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、CBR、遗传算法、贝叶斯信念网络等。神经网络方法,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。数据库方法主要是基于可视化的多维数据分析或OLAP方法,另外还有面向属性的归纳方法。

  微医集团(原挂号网),互联网医院国家试点平台,聚合了全国1900家重点医院,,20万副主任以上的医师,提供预约挂号,在线诊疗,电子处方,在线配药全方位服务。找大专家,上微医。数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据集中识别有效的、新颖的、潜在有用的,以及最终可理解的模式的非平凡过程。它是一门涉及面很广的交叉学科,包括机器学习、数理统计、神经网络、数据库、模式识别、粗糙集、模糊数学等相关技术。

  数据挖掘的技术,可分为:统计方法、机器学习方法、神经网络方法和数据库方法。统计方法,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、CBR、遗传算法、贝叶斯信念网络等。神经网络方法,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。数据库方法主要是基于可视化的多维数据分析或OLAP方法,另外还有面向属性的归纳方法。

  数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据集中识别有效的、新颖的、潜在有用的,以及最终可理解的模式的非平凡过程。它是一门涉及面很广的交叉学科,包括机器学习、数理统计、神经网络、数据库、模式识别、粗糙集、模糊数学等相关技术。

  数据挖掘的技术,可分为:统计方法、机器学习方法、神经网络方法和数据库方法。统计方法,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、CBR、遗传算法、贝叶斯信念网络等。神经网络方法,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。数据库方法主要是基于可视化的多维数据分析或OLAP方法,另外还有面向属性的归纳方法。

http://talkingwithjon.com/shujuwajue/818.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有