您好、欢迎来到现金彩票网!
当前位置:秒速快3 > 数据一致性 >

如何基于日志同步实现数据的一致性和实时抽取? (有彩蛋)

发布时间:2019-05-18 13:26 来源:未知 编辑:admin

  目前就职于宜信技术研发中心,任架构师,负责流式计算和大数据业务产品解决方案。

  曾任职于Naver china(韩国最大搜索引擎公司)中国研发中心资深工程师,多年从事CUBRID分布式数据库集群开发和CUBRID数据库引擎开发

  大家好,我是王东,来自宜信技术研发中心,这是我来社群的第一次分享,如果有什么不足,请大家多多指正、包涵。

  本次分享的主题是《基于日志的DWS平台实现和应用》, 主要是分享一下目前我们在宜信做的一些事情。这个主题里面包含到2个团队很多兄弟姐妹的努力的结果(我们团队和山巍团队的成果)。这次就由我代为执笔,尽我努力给大家介绍一下。

  其实整个实现从原理上来说是比较简单的,当然也涉及到不少技术。我会尝试用尽量简单的方式来表达,让大家了解这个事情的原理和意义。在过程中,大家有问题可以随时提出,我会尽力去解答。

  事情是从公司前段时间的需求说起,大家知道宜信是一个互联网金融企业,我们的很多数据与标准互联网企业不同,大致来说就是:

  玩数据的人都知道数据是非常有价值的,然后这些数据是保存在各个系统的数据库中,如何让需要数据的使用方得到一致性、实时的数据呢?

  DBA开放各个系统的备库,在业务低峰期(比如夜间),使用方各自抽取所需数据。由于抽取时间不同,各个数据使用方数据不一致,数据发生冲突,而且重复抽取,相信不少DBA很头疼这个事情。

  公司统一的大数据平台,通过Sqoop 在业务低峰期到各个系统统一抽取数据, 并保存到Hive表中, 然后为其他数据使用方提供数据服务。这种做法解决了一致性问题,但时效性差,基本是T+1的时效。

  基于trigger的方式获取增量变更,主要问题是业务方侵入性大,而且trigger也带来性能损失。

  这些方案都不算完美。我们在了解和考虑了不同实现方式后,最后借鉴了 linkedin的思想,认为要想同时解决数据一致性和实时性,比较合理的方法应该是来自于log。

  把增量的Log作为一切系统的基础。后续的数据使用方,通过订阅kafka来消费log。

  大数据的使用方可以将数据保存到Hive表或者Parquet文件给Hive或Spark查询;

  由于kafka的日志是可以重复消费的,并且缓存一段时间,各个使用方可以通过消费kafka的日志来达到既能保持与数据库的一致性,也能保证实时性;

  为什么使用log和kafka作为基础,而不使用Sqoop进行抽取呢? 因为:

  Dbus(数据总线):负责实时将数据从源端实时抽出,并转换为约定的自带schema的json格式数据(UMS 数据),放入kafka中;

  Wormhole(数据交换平台):负责从kafka读出数据 将数据写入到目标中;

  Swifts(实时计算平台):负责从kafka中读出数据,实时计算,并将数据写回kafka中。

  Log extractor和dbus共同完成数据抽取和数据转换,抽取包括全量和增量抽取。

  Dbus web是dbus的配置管理端,rider除了配置管理以外,还包括对Wormhole和Swifts运行时管理,数据质量校验等。

  由于时间关系,我今天主要介绍DWS中的Dbus和Wormhole,在需要的时候附带介绍一下Swifts。

  如前面所说,Dbus主要解决的是将日志从源端实时的抽出。 这里我们以MySQL为例子,简单说明如何实现。

  我们知道,虽然MySQL InnoDB有自己的log,MySQL主备同步是通过binlog来实现的。如下图:

  Row 模式:日志中会记录成每一行数据被修改的形式,然后在slave端再对相同的数据进行修改。

  Statement 模式: 每一条会修改数据的sql都会记录到 master的bin-log中。slave在复制的时候SQL进程会解析成和原来master端执行过的相同的SQL来再次执行。

  Mixed模式: MySQL会根据执行的每一条具体的sql语句来区分对待记录的日志形式,也就是在Statement和Row之间选择一种。

  由于statement 模式的缺点,在与我们的DBA沟通过程中了解到,实际生产过程中都使用row 模式进行复制。这使得读取全量日志成为可能。

  通常我们的MySQL布局是采用 2个master主库(vip)+ 1个slave从库 + 1个backup容灾库 的解决方案,由于容灾库通常是用于异地容灾,实时性不高也不便于部署。

  为了最小化对源端产生影响,显然我们读取binlog日志应该从slave从库读取。

  读取binlog的方案比较多,github上不少,参考。最终我们选用了阿里的canal做位日志抽取方。

  对于增量的log,通过订阅Canal Server的方式,我们得到了MySQL的增量日志:

  按照Canal的输出,日志是protobuf格式,开发增量Storm程序,将数据实时转换为我们定义的UMS格式(json格式,稍后我会介绍),并保存到kafka中;

  在考虑使用Storm作为解决方案的时候,我们主要是认为Storm有以下优点:

  对于流水表,有增量部分就够了,但是许多表需要知道最初(已存在)的信息。这时候我们需要initial load(第一次加载)。

  对于initial load(第一次加载),同样开发了全量抽取Storm程序通过jdbc连接的方式,从源端数据库的备库进行拉取。initial load是拉全部数据,所以我们推荐在业务低峰期进行。好在只做一次,不需要每天都做。

  全量抽取,我们借鉴了Sqoop的思想。将全量抽取Storm分为了2 个部分:

  数据分片需要考虑分片列,按照配置和自动选择列将数据按照范围来分片,并将分片信息保存到kafka中。

  全量抽取的Storm程序是读取kafka的分片信息,采用多个并发度并行连接数据库备库进行拉取。因为抽取的时间可能很长。抽取过程中将实时状态写到Zookeeper中,便于心跳程序监控。

  无论是增量还是全量,最终输出到kafka中的消息都是我们约定的一个统一消息格式,称为UMS(unified message schema)格式。

  消息中schema部分,定义了namespace 是由 类型+数据源名+schema名+表名+版本号+分库号+分表号能够描述整个公司的所有表,通过一个namespace就能唯一定位。

  _ums_ts_ 发生增删改的事件的时间戳,显然新的数据发生的时间戳更新;

  _ums_id_ 消息的唯一id,保证消息是唯一的,但这里我们保证了消息的先后顺序(稍后解释);

  payload是指具体的数据,一个json包里面可以包含1条至多条数据,提高数据的有效载荷。

  UMS中支持的数据类型,参考了Hive类型并进行简化,基本上包含了所有数据类型。

  在整个数据传输中,为了尽量的保证日志消息的顺序性,kafka我们使用的是1个partition的方式。在一般情况下,基本上是顺序的和唯一的。

  但是我们知道写kafka会失败,有可能重写,Storm也用重做机制,因此,我们并不严格保证exactly once和完全的顺序性,但保证的是at least once。

  对于全量抽取,_ums_id_是唯一的,从zk中每个并发度分别取不同的id片区,保证了唯一性和性能,填写负数,不会与增量数据冲突,也保证他们是早于增量消息的。

  对于增量抽取,我们使用的是MySQL的日志文件号 + 日志偏移量作为唯一id。Id作为64位的long整数,高7位用于日志文件号,低12位作为日志偏移量。

  这样,从日志层面保证了物理唯一性(即便重做也这个id号也不变),同时也保证了顺序性(还能定位日志)。通过比较_ums_id_ 消费日志就能通过比较_ums_id_知道哪条消息更新。

  其实_ums_ts_与_ums_id_意图是类似的,只不过有时候_ums_ts_可能会重复,即在1毫秒中发生了多个操作,这样就得靠比较_ums_id_了。

  整个系统涉及到数据库的主备同步,Canal Server,多个并发度Storm进程等各个环节。

  通过心跳模块,例如每分钟(可配置)对每个被抽取的表插入一条心态数据并保存发送时间,这个心跳表也被抽取,跟随着整个流程下来,与被同步表在实际上走相同的逻辑(因为多个并发的的Storm可能有不同的分支),当收到心跳包的时候,即便没有任何增删改的数据,也能证明整条链路是通的。

  Storm程序和心跳程序将数据发送公共的统计topic,再由统计程序保存到influxdb中,使用grafana进行展示,就可以看到如下效果:

  图中是某业务系统的实时监控信息。上面是实时流量情况,下面是实时延时情况。可以看到,实时性还是很不错的,基本上1~2秒数据就已经到末端kafka中。

  考虑到数据安全性,对于有脱敏需求的场景,Dbus的全量storm和增量storm程序也完成了实时脱敏的功能。脱敏方式有3种:

  总结一下:简单的说,Dbus就是将各种源的数据,实时的导出,并以UMS的方式提供订阅, 支持实时脱敏,实际监控和报警。

  说完Dbus,该说一下Wormhole,为什么两个项目不是一个,而要通过kafka来对接呢?

  其中很大一个原因就是解耦,kafka具有天然的解耦能力,程序直接可以通过kafka做异步的消息传递。Dbus和Wornhole内部也使用了kafka做消息传递和解耦。

  另外一个原因就是,UMS是自描述的,通过订阅kafka,任何有能力的使用方来直接消费UMS来使用。

  虽然UMS的结果可以直接订阅,但还需要开发的工作。Wormhole解决的是:提供一键式的配置,将kafka中的数据落地到各种系统中,让没有开发能力的数据使用方通过wormhole来实现使用数据。

  如图所示,Wormhole 可以将kafka中的UMS 落地到各种系统,目前用的最多的HDFS,JDBC的数据库和HBase。

  虽然Spark Stream比Storm延时稍差,但Spark有着更好的吞吐量和更好的计算性能;

  Swifts的本质是读取kafka中的UMS数据,进行实时计算,将结果写入到kafka的另外一个topic。

  实时计算可以是很多种方式:比如过滤filter,projection(投影),lookup, 流式join window aggregation,可以完成各种具有业务价值的流式实时计算。

  kafka一般只保存若干天的信息,不会保存全部信息,而HDFS中可以保存所有的历史增删改的信息。这就使得很多事情变为可能:

  当程序出现错误是,可以通过回灌(backfill),重新消费消息,重新形成新的快照。

  由于每次写的Parquet都是小文件,大家知道HDFS对于小文件性能并不好,因此另外还有一个job,每天定时将这些的Parquet文件进行合并成大文件。

  每个Parquet文件目录都带有文件数据的起始时间和结束时间。这样在回灌数据时,可以根据选取的时间范围来决定需要读取哪些Parquet文件,不必读取全部数据。

  常常我们遇到的需求是,将数据经过加工落地到数据库或HBase中。那么这里涉及到的一个问题就是,什么样的数据可以被更新到数据?

  对于第二个问题,就涉及到_ums_id_了,因为我们已经保证了_ums_id_大的值更新,因此在找到对应数据行后,根据这个原则来进行替换更新。

  如果已经插入的_ums_id_比较大,是删除的数据(表明这个数据已经删除了), 如果不是软删除,此时插入一个_ums_id_小的数据(旧数据),就会真的插入进去。

  这就导致旧数据被插入了。不幂等了。所以被删除的数据依然保留(软删除)是有价值的,它能被用于保证数据的幂等性。

  插入数据到Hbase中,相当要简单一些。不同的是HBase可以保留多个版本的数据(当然也可以只保留一个版本)默认是保留3个版本;

  选择合适的rowkey:Rowkey的设计是可以选的,用户可以选择源表的主键,也可以选择若干列做联合主键。

  Version的选择很有意思,利用_ums_id_的唯一性和自增性,与version自身的比较关系一致:即version较大等价于_ums_id_较大,对应的版本较新。

  从提高性能的角度,我们可以将整个Spark Streaming的Dataset集合直接插入到HBase,不需要比较。让HBase基于version自动替我们判断哪些数据可以保留,哪些数据不需要保留。

  插入数据到数据库中,保证幂等的原理虽然简单,要想提高性能在实现上就变得复杂很多,总不能一条一条的比较然后在插入或更新。

  我们知道Spark的RDD/dataset都是以集合的方式来操作以提高性能,同样的我们需要以集合操作的方式实现幂等性。

  B:存在的数据,比较_ums_id_, 最终只将哪些_ums_id_更新较大row到目标数据库,小的直接抛弃。

  使用Spark的同学都知道,RDD/dataset都是可以partition的,可以使用多个worker并进行操作以提高效率。

  比如:因为别的worker已经插入,那么因为唯一性约束插入失败,那么需要改为更新,还要比较_ums_id_看是否能够更新。

  对于无法插入其他情况(比如目标系统有问题),Wormhole还有重试机制。说起来细节特别多。这里就不多介绍了。

  插入到其他存储中的就不多介绍了,总的原则是:根据各自存储自身特性,设计基于集合的,并发的插入数据实现。这些都是Wormhole为了性能而做的努力,使用Wormhole的用户不必关心 。

  说了那么多,DWS有什么实际运用呢?下面我来介绍某系统使用DWS实现了的实时营销。

  系统A的数据都保存到自己的数据库中,我们知道,宜信提供很多金融服务,其中包括借款,而借款过程中很重要的就是信用审核。

  借款人需要提供证明具有信用价值的信息,比如央行征信报告,是具有最强信用数据的数据。 而银行流水,网购流水也是具有较强的信用属性的数据。

  借款人通过Web或手机APP在系统A中填写信用信息时,可能会某些原因无法继续,虽然可能这个借款人是一个优质潜在客户,但以前由于无法或很久才能知道这个信息,所以实际上这样的客户是流失了。

  应用了DWS以后,借款人已经填写的信息已经记录到数据库中,并通过DWS实时的进行抽取、计算和落地到目标库中。根据对客户的打分,评价出优质客户。然后立刻将这个客户的信息输出到客服系统中。

  客服人员在很短的时间(几分钟以内)就通过打电话的方式联系上这个借款人(潜客),进行客户关怀,将这个潜客转换为真正的客户。我们知道借款是有时效性的,如果时间太久就没有价值了。

  我们数据使用方的数据来自多个系统,以前是通过T+1的方式获得报表信息,然后指导第二天的运营,这样时效性很差。

  通过DWS,将数据从多个系统中实时抽取,计算和落地,并提供报表展示,使得运营可以及时作出部署和调整,快速应对。

  DWS技术上基于主流实时流式大数据技术框架,高可用大吞吐强水平扩容,低延迟高容错最终一致。

  DWS能力上支持异构多源多目标系统,支持多数据格式(结构化半结构化非结构化数据)和实时技术能力。

  DWS将三个子项目合并作为一个平台推出,使得我们具备了实时的能力, 驱动各种实时场景应用。

  适合场景包括:实时同步/实时计算/实时监控/实时报表/实时分析/实时洞察/实时管理/实时运营/实时决策

  Q2:DWS是三个子项目组成,平均每个项目5~7人。是有点复杂,其实也是试图使用大数据技术来解决我们公司目前遇到的困难。

  因为是搞大数据相关技术,所有团队里面的兄弟姐妹都还是比较happy的:)

  其实这里面,Dbus和Wormhole相对固定模式化,容易轻松复用。Swifts实时计算是与每个业务相关比较大的,自定义比较强,相对比较麻烦一些。

  A3:我们也考虑过向社区贡献,就像宜信的其他开源项目一样,目前项目刚刚成形,还有待进一步磨炼,我相信未来的某个时候,我们会给它开源出来。

  A4:不是系统工程师,在我们宜信有多位架构师,应该算是以技术驱动业务的技术管理人员。包含产品设计,技术管理等。

http://talkingwithjon.com/shujuyizhixing/89.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有